Fabrication of stable organometallic halide perovskite NWs based optoelectronic devices

Aashir Waleed, Zhiyong Fan *

Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China

Organometallic halide perovskite materials have triggered global attention in recent years due to their exciting and optimistic high performance energy conversion properties (high luminescence efficiency and tremendous optical absorption ability [1,2]). These interesting photovoltaic properties together make them a promising candidate for high performance optoelectronic devices (Solar cells, Photodetectors, Image sensors and Light emitting diodes etc.) and switching from CdTe devices [3]. Despite of outstanding and stunning energy conversion abilities of organic perovskite materials, a big associated drawback with these materials is the poor stability and durability under ambient conditions. Organic perovskite is an ionic compound and destabilizes very quickly upon invasion of oxygen and water molecules [4–6]. A recent research from Gu et al. [4] and Waleed et al. [5] in HKUST tried to come up with a novel idea of lateral protection for perovskite material, provided by anodized alumina template as demonstrated with schematic in Fig. 1. It was discovered that stability of perovskite material (CH3NH3SnI3 and CH3NH3PbI3) was enhanced dramatically by lateral protection of anodized alumina. Anodized Alumina template is a suitable choice for lateral protection due to its low-cost, high melting point and easy fabrication methods.

In these works [4,5], three dimensional CH3NH3PbI3 and CH3NH3SnI3 perovskite nanowires (NWs) array were effectively grown from Pb/Sn metal precursor inside anodized alumina template by simple and low-cost vapor solid solid (VSS) method at 170 °C as shown in Fig. 2a. Perovskite material was grown by reaction of vaporized Methylammonium (MAI) with Pb metal clusters inside chemical vapor deposition (CVD) chamber. Growth chain follows Pb/Sn→PbI2/SnI2 before complete conversion to CH3NH3PbI3 and CH3NH3SnI3. This is a two-step growth process with PbI2/SnI2 as intermediate products. The overall growth process for CH3NH3PbI3 and CH3NH3SnI3 perovskite material can be summarized by following equations [4–6].

\[
\text{Pb(s) + 3CH}_3\text{NH}_3\text{I(s)} \rightarrow \text{CH}_3\text{NH}_3\text{PbI}_3(s) + 2\text{CH}_3\text{NH}_2(g) + \text{H}_2(g)
\]

(5)

\[
\text{Sn(s) + 3CH}_3\text{NH}_3\text{I(s)} \rightarrow \text{CH}_3\text{NH}_3\text{SnI}_3(s) + 2\text{CH}_3\text{NH}_2(g) + \text{H}_2(g)
\]

(6)

Perovskite NWs were usually grown by evaporation of MAPbI3/DMF solution in open air [7] but air moisture evolves crystal damaging, polycrystallinity and rough surfaces in NWs [4]. This method has superiority over existing NWs growth methods in terms of air moisture hindrance and guided channel growth during whole process. Due to these reasons, this growth approach provided single crystalline and smooth surface to these NWs inside template. Consequently, single crystallinity and tight physical confinement of template provide enhanced stability to these NWs as compared to perovskite materials without lateral protection.

* Corresponding author.
E-mail address: eezfan@ust.hk (Z. Fan).

http://dx.doi.org/10.1016/j.scib.2017.04.012
2095-9273/© 2017 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
Later, stability measurements based on these perovskite NWs showed that effective and tight mechanical embedding inside anodized alumina template slows down the decay process of perovskite material. Photoluminescence (PL) emission was used to quantify the decay of material. PL emission decay measurements showed that decay process of sidewall protected perovskite material declines C_28^{10} times as compared to thin film samples with no lateral protection as shown in Fig. 2b. This splendor of stability can be associated with effective lateral protection of material from moisture and oxygen which brings a dramatic increase in stability. This stability measure can be tremendously increased further by involving encapsulation on top. PL emission measurements showed that these NWs stability improved further by adopting polymer packaging protection on top surface. PL emission remained almost same even after a week for sample with top and lateral encapsulation.

As described earlier, stability is a big hindrance in realizing long lasting and durable devices based on perovskite materials, so photodetector and image sensor devices were realized by involving these highly stable perovskite NWs inside template. High density and stability of these perovskite NWs contributes in realization of optoelectronics devices. A 1024-pixel image sensor based on CH$_3$NH$_3$PbI$_3$ was fabricated and their ability to capture still and dynamic images was well demonstrated by Gu et al. [14]. In a similar fashion, a stable photodetector device based on physically embedded CH$_3$NH$_3$SnI$_3$ NWs inside anodized template was realized by Waleed et al. [15] to demonstrate the importance of lateral protection. It was discovered that photodetector device based on these tightly embedded CH$_3$NH$_3$SnI$_3$ NWs outperformed thin film device. Light current decay of photodetector device was \sim500 times slower than thin film device. This light current comparison can be understood with light current comparison curves demonstrated in Fig. 2c.

Overall, this highlighted work demonstrates for the first-time a low cost, simple, novel and well controlled guided growth of single crystalline organometallic halide perovskite NWs from chemical reaction between Pb/Sn metal precursor and MAI vapors by chemical vapor deposition (CVD). This is a non-catalytic growth mechanism which is distinctively different with inorganic NWs growth in the past. Furthermore, optical measurements results are clear evident that lateral protection is of crucial importance along with top protection of perovskite for enhancing the stability measures. Note that although performance and stability of perovskite material can be further enhanced by growing bulk single-crystal perovskite thin films, these single crystalline perovskite nanowires have advantages in terms of flexibility and they can readily be used for integrated nanoelectronics and optoelectronic devices. These reported 3-D vertical perovskite NWs have attracting properties of (1) Enhanced stability (2) single crystallinity (3) very high-density 4×10^8/cm2 (4) periodic symmetry (5) low cost fabrication and (6) tunable geometry of NWs. These above-mentioned properties make them suitable candidates for their usage in high

Fig. 1. (Color online) Schematic illustration of lateral protection mechanism.

Fig. 2. (Color online) The overall growth schematic for organometallic perovskite NWs and quantified material stability improvement over polycrystalline perovskite thin film. (a) Growth schematic for 3D organometallic perovskite NWs inside CVD furnace. (b) Normalized PL intensity comparison for thin film and NWs perovskite sample. (c) Normalized light current decay comparison of lateral protected NWs and thin film photodetector devices. (Adapted from Ref. [15].)
performance and stable optoelectronic devices. As a proof concept image sensor and photodetector devices were fabricated from these NWs which showed high performance in terms of stability and reliability.

Conflict of interest

The authors declare that they have no conflict of interest.

References