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1. Introduction

In the earlier half of the 20th century, sci-
entists Wertheimer, Köhler, and Kofka pos-
tulated the principles of Gestalt learning
based on the premise that human percep-
tion is not always the same as a simple
amalgam of input sensory stimuli. In other
words, the whole of what we sometimes
visually perceive is different from the
sum of its parts[1–3] Gestalt laws of percep-
tion have been categorized as principles of
similarity, connection, proximity, symme-
try, continuity, and closure. The principle
of closure states that humans tend to sys-
temize their perception into complete
objects that are known to them beforehand
by bridging the existing gaps in input stim-
uli.[4] Owing to the complexity of the
human brain and its associated thought
processes, it is extremely challenging for
researchers to decipher the origin of these
perceptual habits or to emulate them effec-
tively using artificial systems. Of late, with
the inception of neuromorphic computing,
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The Gestalt principles of perceptual learning elucidate how the human brain
categorizes and comprehends a set of visual elements grouped together. One of
the principles of Gestalt perceptual learning is the law of closure which pro-
pounds that human perception has the proclivity to visualize a fragmented object
as a preknown whole by bridging the missing gaps. Herein, a letter recognition
scheme emulating the Gestalt closure principle is demonstrated, utilizing arti-
ficial synapses made of 3D integrated MA3Bi2I9 (MBI) perovskite nanowire (NW)
array. The artificial synapses exhibit short-term plasticity (STP) and long-term
potentiation (LTP) and a transition from STP to LTP with increasing number of
input electrical pulses. Initiatory ab initio molecular dynamics (AIMD) simula-
tions attribute the conductance change in the MBI NW artificial synapses to the
rotation of MAþ clusters, culminating in charge exchange between MAþ and
Bi2I9

3�. Each device yields 40 conductance states with excellent retention>105 s,
minimal variation (2σ/mean) <10%, and endurance of �105 cycles. MBI NW-
based artificial neural network (ANN) is constructed to recognize fragmented
letters alike their distinction in unabridged form and also the gradual withering of
synaptic connectivity with engendered missing fragments is demonstrated,
thereby successfully implementing Gestalt closure principle.
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scientists have successfully emulated brain activities like facial
classification, image processing, etc. at the hardware and device
level with artificial neural networks (ANNs).[5,6] As evident from
past literature, ANNs have the capability to mimic a variety of
human perceptual and cognitive traits utilizing the inherent sim-
ilarity between neuron-synaptic interconnects in artificial and
biological synapses.[7–11] At the device level, neuromorphic chips
mostly comprise assembled memristors that behave as artificial
synapses, performing the processing tasks akin to the human
brain. Besides traditional switching layers in resistive RAM
(RRAM)-based memristors, halide perovskite materials that have
carved a niche for themselves in the genre of optoelectronics are
now also finding their way in RRAM-based neuromorphic hard-
ware.[12,13] Plethora of charge and ionmovement pathways, excel-
lent hysteresis, high response to optical stimuli, and presence of
defect states modulating the conductivity are reasons why halide
perovskite materials are emerging as promising candidates for
RRAMs in neuromorphic devices. However, previously reported
studies on halide perovskite-based neuromorphic systems
demonstrate simple short-term plasticity and long-term
potentiation (STP and LTP) learning rules and no sophisticated
processing tasks at the device level have been demonstrated.[14]

Specifically, being extremely sensitive to environmental condi-
tions and dearth of protection mechanism to instill material
and electrical stability in thin-film (TF)-based active layers, the
performance metrics of halide perovskite in terms of achieving
state-of-the-art standard for neuromorphic applications, have not
been achieved yet. The material and electrical instability impedes
the accessing of temporally stable and robust LTP conduction
states, which in turn thwarts the performing of neural
network-based processing in halide perovskite devices.

In this work, we developed artificial synapses comprising
methyl ammonium bismuth iodide (MA3Bi2I9 or MBI) perov-
skite nanowires (NWs) sandwiched between indium-doped tin
oxide (ITO) and aluminum (Al) electrodes. The MBI NWs were
embedded in a nanoengineered porous alumina membrane
(PAM) which imparted excellent material and electrical stability
to the perovskite, thereby improving the synaptic and neuromor-
phic device performance.[15–18] Using MBI as the perovskite
active layer also helped in eluding the toxicity issue associated
with lead halide perovskite.[19] Apart from the electrical andmate-
rial stability-related advantages over traditional halide perovskite
TF-based devices, the distinct advantages of the vertical NWs in
PAM over previously reported other material-based NW artificial
synapses must be mentioned here. Previous reports have
explored the utilization of single horizontal nanowires for build-
ing artificial synapses that suffer from the absence of large-scale
assembly of NWs hindering the realization of physical ANNs, a
problem that can be effectively navigated with ultrahigh-density
(�1010 cm�2) vertically assembled MBI NWs.[20,21] Horizontal
and vertical arrays of NWs have been utilized previously for
developing synaptic transistors and two-terminal artificial synap-
ses.[22,23] However they lack protectionmechanism in the form of
PAM walls and controllable assembly techniques to grow ultra-
high density ordered wire array. These inhibit the utilization of
such methods for environmentally delicate materials like halide
perovskite as well as debilitate the temporal stability and robust-
ness of the LTP conduction states, thereby thwarting the imple-
mentation of such synaptic devices in large-scale physical ANNs

for complex neuromorphic processing tasks. Furthermore, the
NWs in the PAM are electrically isolated from one another,
which suppresses lateral electrical leakages, and the supremely
high density of NWs paves the way for large-scale ANNs with
scaled-down synaptic device sizes.

The MBI NW devices exhibited STP behavior by responding to
input sensory electrical pulses of varying amplitude, duration,
and interval. A gradual transition from the STP–to-LTP mode
was observed with increased number of stimulating pulses
and consequently the devices demonstrated LTP behavior by
responding to rate as well as the number of incoming LTP pulses
and the pre-/postsynaptic delay between pulses. For the mono-
crystalline MBI NWs, the origin of the conductivity change was
traced with the aid of first principle ab initio molecular dynamics
simulations. It was deciphered that the rotation of the MAþ clus-
ters in the MBI crystal structure causes charge transfer between
MAþ and Bi2I9

3�, resulting in the plasticity or gradual conduc-
tivity change. At least 40 accessible conductance states were
obtained by applying input LTP pulse trains. The conductance
states could be retained >105 s and they showed minimal jitter
with variation (2σ where ‘σ’ is the standard deviation/mean)
<10% and endurance �105 cycles. A single-layered ANN, built
with MBI NW devices as the unit blocks, was trained with syn-
aptic weights obtained from delta rule-based simulations. A letter
recognition scheme was developed such that the ANN could suc-
cessfully discriminate between fragmented letters ‘H,K,U,S,T’
alike nonfragmented ones. Also via the MBI NW-based ANN,
it was experimentally demonstrated that with more missing
pieces of a single letter, the distinguishing ability and subsequent
synaptic connectivity of the MBI NW artificial synapses wither,
much like our perceptual habit. The successful implementation
of this letter recognition scheme emulating Gestalt closure prin-
ciple with MBI NWs-based ANN here can propel neuromorphic
hardware to perform pattern recognition tasks emulating human
cognition as well as elevate halide perovskites to the state-of-the-
art standard in performing neuromorphic processing tasks.

2. Results and Discussion

2.1. Concept and Morphological Study

Figure 1a demonstrates the logical corroboration between Gestalt
closure principle in human brain and letter recognition-based
Gestalt closure in the artificial synaptic array based on MBI
NWs. The top row shows how the human brain perceives an
incomplete and fragmented image of a butterfly but still is able
to organize the image as that of a complete butterfly. Similarly
the bottom row of Figure 1a shows the device structure of the
artificial synaptic NW array. MBI perovskite NWs are rooted
in the insulating PAM template with ITO and Al as top and bot-
tom electrodes, respectively. The input stimuli to the device are a
set of defected letters ‘H,K,U,S,T’ and the output shows the com-
plete version of the letters ‘H,K,U,S,T’ once the MBI NW device
has successfully completed the recognition task emulating the
Gestalt learning of closure. Figure 1b shows the transmission
electron microscopy (TEM) image of the MBI NW array
surrounded by the aluminum oxide (Al2O3) walls. The diameter
of an individual NW is �40 nm, grown by a vapor–solid–solid
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reaction (VSSR) (see Experimental Section). The energy-
dispersive X-Ray spectroscopy (EDS) mapping corresponding
to the MBI NW array is shown in Figure S1, Supporting
Information. The high-resolution transmission electron micros-
copy (HRTEM) image of an individual MBI NW is shown in
Figure 1c, which exhibits excellent single crystallinity and a lat-
tice spacing of 5.4 Å corresponding to the [004] plane.[24–26]

Figure S2, Supporting Information, shows the X-Ray diffraction
(XRD) and photoluminescence (PL) spectra of the MBI NWs in
PAM, conforming with the previously reported MBI material
characterizations.[26] The inset shows the fast Fourier transform
(FFT) reciprocal lattice of the MBI NW, exhibiting the typical hex-
agonal lattice structure of MBI perovskite.[27]

2.2. Artificial Synaptic Characteristics

Synaptic plasticity refers to the modulation of the strength of
neuronal connections in the brain that is directly related to
behavioral modifications, learning, and memory. Plasticity can
be broadly of types: STP which results in short-term habituation
and transient changes in response to external stimuli and long-
term potentiation (LTP) that results in prolonged modification
synaptic strength.[28] The MBI NW artificial synapses exhibited
STP behavior in the form of synaptic voltage-dependent plasticity
(SVDP), synaptic duration-dependent plasticity (SDDP), and
paired pulse facilitation (PPF), as shown in Figure 2a–c.
Figure S3, Supporting Information, details out the various ampli-
tude, duration, and interval schemes used for the input SVDP,
SDDP, and PPF electrical pulses. As shown in Figure 2d, with a
gradual increase in the number of input presynaptic pulses from

2 to 50, the synaptic connectivity in terms of durability and con-
ductance is strengthened. With 2 pulses of 5 V amplitude and
reading with 0.1 V, the postsynaptic current of �0.1mA could
only be retained for 400ms (inset of Figure 2d). However with
50 such input pulses, the postsynaptic current of �10mA could
be retained without any degradation for 20 s, indicating a trans-
formation from STP to LTP. Corresponding to Figure 2d, the
synaptic number-dependent plasticity (SNDP) has been demon-
strated in Figure 2e, which shows the increase in device conduc-
tance with increasing number of input pulses. In the LTP mode,
the MBI NW devices also demonstrated synaptic rate-dependent
plasticity (SRDP) when a train of 20 input pulses of 10ms width
and 5 V amplitude preceded and succeeded by reading voltage
pulse of 0.1 V height was fed to the devices, such that the inter-
vals between the pulses in the train were varied from 2 to 50ms
(see Figure 2f and supporting information Figure S4a–c,
Supporting Information). A gradual diminishing of the conduc-
tance change (ΔG) was observed with increasing pulse interval,
mimicking biological synapses.[29] As shown in Figure 2g and
S4d–f, Supporting Information, the MBI NW devices also
showed spike-time-dependent plasticity (STDP). The device con-
ductance change (ΔG) was modulated by the delay between pre
and postsynaptic pulses. Figure 2h shows the potentiation–
depression characteristics of the MBI NW devices for 40 input
pulses. A gradual change in device conductance was observed
indicating the accumulation effect.[30] 5 V/10ms for potentiation,
�5 V/10ms for depression, and read pulse 0.1 V/10ms were
used for the potentiation–depression measurement. The
device-to-device variation data as shown in Figure 2a,b,h are
obtained from 15 NW artificial synapses on different PAM chips.

Figure 1. Concept and morphological study. a) Top: The organization of a fragmented image of a butterfly into a complete one, as performed by the
human brain, thereby exhibiting implementation of Gestalt principle of closure. Bottom: Fragmented letters H, K, U, S, and T being perceived as complete
letters post implementation of letter recognition in artificial MBI NW synaptic array-based neuromorphic device. The MBI NWs, rooted in the PAM, are
clubbed between ITO and Al electrical contacts. b) TEM image of MBI NWs in the PAM. Diameters of the NWs are around �40 nm. The lamella was
prepared by a low-energy focused ion beam cut (for details see Experimental Section). c) HRTEM of a single-crystalline MBI NW with a lattice spacing of
5.4 Å, corresponding to the array shown in (b). Inset shows the FFT reciprocal hexagonal lattice (shaded in purple) of MBI NW.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2022, 2200065 2200065 (3 of 10) © 2022 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.advintellsyst.com


As shown in Figure S5, Supporting Information, the device-to-
device variability of the performance parameters can be reduced
by �3 times if the devices are on the same PAM chip due to bet-
ter material homogenity ascribed to relatively more uniform elec-
trodeposition of precursor Bi metal. The device varaibility can be
improved further with solution-processed polycrytalline NWs
with better material uniformity among different PAM chips.

2.3. Molecular Dynamics Simulation to Decipher the
Conductance Modulation in Monocrystalline MBI

The origin of plasticity or conductance change in polycrystalline
metal halide perovskite-based artificial synapses or memory devi-
ces with inert electrodes has been traditionally ascribed to the
halide ion-mediated charge trapping and detrapping in the defect
states, attributing these devices to the valence change
mechanism (VCM) genre.[31] However, as seen in Figure 1c,
the MBI perovskite NWs are predominantly single crystalline
and the presence of such defect states must be minimal.[27]

On the other hand, the ionized halogen atoms trigger redox reac-
tions and form gaseous products and eventually decompose the
perovskite lattice structure.[32,33] Especially when there is a bias
voltage and current to provide reaction energy, in this case, once
iodine vacancies are formed, the avalanche effect may cause
rapid decomposition of the MBI lattice structure. However, as
will be later discussed, monocrystalline MBI NW devices showed

excellent LTP retention of 105 s under electrical bias without any
degradation as compared with the polycrystalline TF
counterpart which produced brittle LTP states that could last
for �3.7� 104 s. Therefore the possibility of forming iodide
vacancies in the MBI NW devices is minuscule. Hence to
decipher the origin of gradual conductance modulation in
monocrystalline MBI perovskite, we carried out ab initio-based
molecular dynamics (AIMD) simulations and observed the evo-
lution of the primitive cell structure under electric field and a
plausible alternate conduction modulation mechanism is hereby
proposed.

The simulation was performed with 2 periods. To investigate
the conductance modulation mechanism, the simulation starts
with a relaxed primitive cell structure of MBI and electric field
of 3 V nm�1 (E3V nm

�1) was applied along the z-axis to bring
the atomic structure to a new equilibrium. After that, a relaxation
simulation without electric field (E0) was performed to study the
stability of the structure. A video recording the AIMD simulation
has been provided in Movie S1, Supporting Information.

The primitive cell structures of MBI obtained from the AIMD
simulation are plotted in Figure 3a. The initial relaxed atomic
structure of MBI shows the trigonal lattice symmetry of the
bonded bismuth (Bi) atoms and the iodine (I) atoms;
CH3NH3

þ (MAþ) molecules fill in the spaces between the adja-
cent trigonal lattice of Bi2I9

3�, confirming the high crystallinity of
the material. In comparison, the evolution of phase structure in

Figure 2. Synaptic characteristics of MBI NW device. a) Synaptic voltage-dependent plasticity demonstrated by the MBI NW device. The interval and
width of the input pulses were fixed at 50 and 10ms respectively. b) Synaptic duration-dependent plasticity demonstrated by the MBI NW device. The
amplitude and interval of the input pulses were fixed at 5 V and 100ms respectively. c) Paired pulse facilitation demonstrated by the MBI NW device. The
amplitude and duration of the input pulses were fixed at 5 V and 100ms, respectively. d) STP-to-LTP transformation demonstrated by the MBI NW device,
with increasing number of input pulses. The amplitude, width, and interval of the pulses were fixed at 5 V, 10ms, and 10ms, respectively. e) Synaptic
number-dependent plasticity demonstrated by the MBI NW device, corresponding to (d). f ) Spike-rate-dependent plasticity demonstrated by the MBI NW
device. The pulse amplitude, number, width, and interval were fixed at 5 V, 20, 10ms, and 10ms respectively. g) Spike-time-dependent plasticity dem-
onstrated by the MBI NW device. The width and voltage of the pulses were fixed at 50ms and 5 V, respectively. h) Potentiation-depression characteristics
of MBI NW device. The amplitude and width of the pulses were fixed at 5 V/10ms and �5 V/10ms for the potentiation and depression, respectively. A
reading pulse of 0.1 V and 10ms width were used to read out the conductance.
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MBI under electric field is reflected by the slight distortion of the
trigonal symmetry of Bi2I9

3� and the rotation of MAþ.
Particularly, the progress of structure evolution of MBI can be
observed by the rotating MAþ clusters. In this simulation, the
MAþ clusters show drastic changes in position and orientation
during the first 7 ps, while it settles to a position during the rest
of the simulation, which indicates that the electric field drives the
structure of MBI to evolve and reach an alternative equilibrium.

To bolster the postulate, the atom-projected density of states
(PDoS) of the primitive cell structures is plotted in Figure 3b. In
the MBI material, most of the DoS is contributed by the Bi atoms
and I atoms (see Figure S6, Supporting Information); as such,
the PDoS analysis of hydrogen, carbon, and nitrogen atoms is
omitted. In Figure 3b, the bandgap of MBI keeps decreasing
under the effect of electric field and eventually is reduced to

be around 1.1 eV. This bandgap value is then maintained until
the end of the simulation even in the absence of electric field. In
addition, the shrinking of bandgap is the result of PDoS
expansion of the Bi atoms and I atoms, rather than the
generation of gap states. In addition, the applied electric field also
significantly doped the MBI to an n-type material. As the Fermi
level approaches the conduction band edge, the bulk
conductivity of MBI increases significantly.

In addition to the simulation performed with electric field of
3 V nm�1, the effect of a large electric field of 10 V nm�1 was also
investigated. The evolution of bandgap has been summarized in
Figure 3c. Intriguingly, contrary to the gradual decrease in the
bandgap caused by the 3 V nm�1 electric field, under the
10 V nm�1 electric field, the bandgap quickly decreases to 0 within
the simulation time of 0.8 ps. A video recording the AIMD

Figure 3. Molecular dynamics simulation to decipher the conductance modulation in monocrystalline MBI. a) Evolution of the atomic structure of MBI
perovskite. The sample primitive cell structures obtained at the beginning, the end, and in the middle of the molecular dynamic simulation are plotted.
The result shows that the Bi—I-bonded framework has been largely preserved despite that the original trigonal phase is a bit twisted in the MD simulation
with electric field. The MAþ clusters, in contrast, are forced to rotate under electric field, and reach a new stable position in electric field. b) Atom-PDoS of
the MBI structure obtained in MD simulation. The combined effect of material phase deformation and the rotation of MAþ clusters result in a reduced
bandgap and increased electron doping of MBI. c) Evolution of the bandgap of MBI under electric field of 3 and 10 V nm�1. d) Electron charge density
distribution of MBI. The 3D illustration in a primitive cell shows the isosurface of electron density of 0.05 e bohr�3, and the 2D plots of electron density are
sliced from the 3D data using the lattice plane shown in red. As highlighted by the white circles, strong electron exchange is observed when the MAþ

clusters rotate under electric field, whereas the interaction drops off when the MAþ clusters have reached the new stable state. Hence, the electron
interaction is plausibly the origin of doping and PDoS changes.
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simulation has been provided in Movie S2, Supporting
Information. The video shows the abrupt collapse of the primitive
cell structure of MBI, which may be caused by the ionization of
material triggered by the high electric field. The results of the two
simulations suggest that changing the phase structure and con-
ductivity of theMBImaterial needs to overcome an energy barrier.
Compared with the breakdown of the structure, the structural
phase change of the MBI perovskite causes the conductivity to
change.

Furthermore, through the evolution of electron charge density
distribution, we tried to uncover a charge-exchange origin of the
electronic structure change of MBI perovskite in the simulation.
The electron density distributions of the MBI structures are plot-
ted in Figure 3d. An example of the atomic structure and charge
isosurface (0.05 e bohr�3) was illustrated in 3D and from the crit-
ical moment of the atomic structure change, the 2D electron den-
sity distribution map was sampled using the red lattice plane
shown in the 3D image. The sites of major charge exchange
are highlighted using the dashed white circles. Without electric
field bias, the structures of MBI do not show significant charge
interaction between Bi2I9

3� and MAþ, whereas the charge
exchange is intensified due to the rotation of MAþ driven by
electric field. Moreover, the initiation and termination of strong
electron exchange are matched with the period when the material
bandgap decreases and electron doping concentration increases.

The presence of the iodine vacancy-induced defect states at the
MBI NW/PAM interface was also thoroughly investigated to

explore the possibility of such defects contributing to the device
conductance modulation, as shown in Figure S7, Supporting
Information. The MBI with defects at the interface of PAM exhib-
ited DoS characteristics similar to the MBI without defects at the
PAM interface along with the constant presence of the Fermi level
in the middle of bandgap, thereby confirming the incapability of
such defects in modulating device conductance. Therefore, the
calculation results support that, through the rotation of MAþ

cluster, the charge exchange between Bi2I9
3� and MAþ is the

origin of electronic structure change of MBI perovskite.

2.4. Artificial Synapses for Processing/learning Tasks

The MBI NW device was subjected to repeated cyclic I–V sweeps
(0 V! 3 V! 0 V), as shown in Figure 4a. It can be observed that
with increasing cycle number, the device conductance increases,
demonstrating potentiating behavior. Also evident from the log-
scale plot of the first cycle I–V sweep in Figure S8a, Supporting
Information and the successive linear sweeps in Figure 4a, the
change in the device conductance is extremely gradual in nature
without any steep jump in conductance, which is a necessity for
neuromorphic processing devices.[34] Similar cyclical I–V sweeps
within the voltage range 0 V ! 2 V! 0 V, shown in Figure S8b,
Supporting Information, demonstrate the potentiation capability
of the device with lower current and hence lower power expendi-
ture. The lower operating current is attributed to the weaker rotation
of the MAþ clusters triggering the conductance change and

Figure 4. Paving the way for performing processing tasks with MBI NW artificial synapses. a) I–V characteristics of MBI NW device exhibiting enhanced
conductance upon increasing number of sweeps. b) Modulation of device conductance in MBI NW artificial synapse with varying number of depression
pulses. c) Demonstration of 10 temporally stable LTP conductance states within the resistance range between�90Ω and 125Ω. d) Demonstration of 10
temporally stable LTP conductance states within the resistance range between �145Ω and 1.05 kΩ. e) Demonstration of 10 temporally stable LTP
conductance states within the resistance range between �1.057 kΩ and 10.1 kΩ. f ) Temporal jitter or variation (2� standard deviation (σ)/mean)
of the LTP conductance states corresponding to (c)–(e).
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subsequently lesser charge exchange between the MAþ and Bi2I9
3�

species. The negative cyclical I–V sweeps (0 V ! – 3 V! 0 V) have
also been provided in Figure S8c, Supporting Information, exhibit-
ing the depression trend upon increased number of cycles.

To modulate the synaptic weights for performing processing
tasks, it is needed that distinct and temporally stable conductance
states of the artificial synaptic devices be accessed.[35] In the MBI
NW device, the desired conductance state was obtained by apply-
ing trains of potentiation-depression pulses. Such an instance is
shown in Figure 4b, wherein with different depression pulse
(�1 V/0.02 V amplitude and 10ms width) numbers, the desired
conductance state could be achieved within the conductance
range from 10�4 to 10�3 S (from 1 to 10 kΩ resistance range).
Similar attainment of desired conductance in the range from
10�3 to 10�2 S with input depression pulses has been shown
in Figure S8d, Supporting Information. The more the number
of accessed conductance states, better is the processing potential
of the artificial synapses. 30 such conductance states within the
resistance range from 90Ω to 10.1 kΩ, read out with a read volt-
age of 0.01 V, have been shown in Figure 4c–e. Each of the 30
states demonstrated excellent electrical stability and low jitter
with optimal variation (2σ/mean) <10%, as shown in
Figure 4f. Detailed measurements of the retention time ability
for the LTP conductance states were carried out, as shown in
Figure S9, Supporting Information. As shown in Figure S9a,
10 states within the resistance range from 1 to 10 kΩ (different
from the ones shown in Figure 4e) showed excellent retention
capability without any degradation >105 s at a reading voltage
of 0.01 V only. To further demonstrate the robustness of the
LTP conductance states, we carried out intermittent retention
measurements, shown in Figure S9b, Supporting Information,
where instead of a continuous DC bias of 0.01 V, sporadic read-
ing DC bias of 0.01 V was applied to the device after every 30min
for 2 h and the LTP states remained unaltered for the entire dura-
tion. Also, the total number of conductance states accessed now
counts to 40, after adding the ones shown in Figure 4e and S9,
Supporting Information. To the best of our knowledge, this is the
longest retention time and highest number of accessed LTP
states of perovskite-based artificial synapses known so far and
is also at par with the traditional material systems reported pre-
viously. (For details see Table S1, Supporting Information that
compares the various figures of merit of MBI NW artificial syn-
apses with previously reported perovskite and NW based artificial
synapses). We also performed a comparative study of the LTP
conductance state’s stability for TFMBI and NW-basedMBI devi-
ces. The TF devices were observed to bemore prone to LTP reten-
tion failure as compared with the NW devices. Two modes of
failure were observed, as shown in Figure S10a,b, Supporting
Information respectively. In some of the devices, the degradation
of the LTP conductance state was gradual (Figure S10a,
Supporting Information) and in some the change was rather
abrupt (Figure S10b, Supporting Information). A statistical study
on batches of 10 TF and 10 NW devices revealed that for a par-
ticular conductance state (�2.22� 10�4 S for instance, as shown
in Figure S10c, Supporting Information), the NW LTP states
remained intact for 105 s. The TF LTP states however showed
a relatively high variation of retention time with a mean of
37 252 s. This performance improvement in MBI NW-based syn-
apses compared with TF devices and also relative to previously

reported TF-based perovskite synapses is attributed to the excel-
lent mechanical and electrical stability instilled by the PAM pas-
sivation. Specifically the PAM prevented external oxygen and
water molecules to attack the environmentally delicate perovskite
material, thereby improving material robustness and device
lifetime.[17,32]

Device power consumption reduction strategies have been
discussed in detail in Figure S11, Supporting Information.
Specifically, the reduction in top electrode size to a
40 μm� 40 μm square helped in drastically reducing the
operating current to�μA range. The device operational reliability
was tested for a batch of 100 devices, exhibiting excellent
distinguishability among the current states (see Figure S12a,
Supporting Information). The devices could endure the I–V
mode for>104 cycles and the pulse mode for�105 cycles without
any degradation in performance, as can be seen from
Figure S12b,c, Supporting Information. It is worth mentioning
that the PAM-induced excellent electrical stability rendered the
MBI NW synapses to possess the highest endurance among
reported perovskite artificial synapses, to the best of our
knowledge.

2.5. Implementing Letter Recognition Emulating Gestalt
Principle of Closure

As shown in Figure 5a, a single-layered ANN was successfully
constructed to recognize five full letters, ‘H,K,U,S,T’, as well
as their defected or fragmented letters. An illustration of all
the fragmented letters has been provided in Figure S13,
Supporting Information. Each letter, the training dataset, is a
6� 3 binary image, which is either 1 or 0 for each pixel, as shown
in Figure 5a. The structure of this neural network consists of 18
pixels input which represent the five letters and then the signal
from the input is relayed to the memristor-based (MBI NW syn-
apse array) neural network for processing and ultimately uses
five letters as the neuronal output. The input, a 6� 3 binary digit
image with each pixel, is represented by a voltage equal to either
0.01 or 0 V, connecting to one synaptic cell. The input voltage is
chosen to be 0.01 V for low power consumption achieved by MBI
NW devices because such a small voltage is already enough to
actuate the system. Each effective cell comprised one MBI
NW device and one resistance with constant value (�1 kΩ) such
that there are totally 18 MBI NW devices and 18 fixed value resis-
tances in one row corresponding to 18 pixels for each input letter.
See Figure S14, Supporting Information for detailed input/out-
put connections and the image of the device. We should notice
that the data is processed in parallel as in our brain and the power
consumption is only due to the current flowing through the MBI
NW device. Thus, the data processing speed for big data is also
potentially fast with ultralow power consumption. Then we
obtain the output current as the differential value following
Kirchhoff ’s law,

P18
i¼1 Imem �P18

i¼1 Ires, between the summed
memristor current,

P18
i¼1 Imem and resistance current,P18

i¼1 Ires. As shown in Figure 5a, the final letter neuronal output,
ln is calculated as the nonlinear activation function of output cur-
rent as shown and the input image will be classified as the letter
with largest letter neuronal output from each row.
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ln ¼ tanh β
X18
i¼1

Imem �
X18
i¼1

Ires

 ! !
(1)

where n represents H, K, U, S, or T and β is a constant <1, used
to adjust the synaptic weights.

We established the MBI NW device-based letter recognition
depending on the Delta rule in off-line training mode.[6,36] We
trained the single-layered ANN with the help of software first
and then transferred the weights into the conductance of the
MBI NW devices (refer to supporting information for more
details). We applied positive pulse (potentiation) to increase
the conductance while negative pulse (depression) to decrease
the conductance and finally achieved the accurate conductance
value of memristor. For example to achieve 1 kΩ resistance or
1mS conductance as the synaptic weight, 200 potentiation pulses
are fed to the device. However, the resistance/conductance level
might have been 1.2 kΩ or 0.83mS after the application of the
pulse train. To bring the weight to its desired value, then we
applied 20 depression pulses to ensure as much accuracy as pos-
sible in the off-chip training. In Figure 5b,c, we realized the rec-
ognition of five full letters and their fragmented counterpart. The

broken letter is formed by setting one line of the complete letters
as null. As each letter has six rows, there are totally six defected
letters for each complete letter. Thus, for each letter, there are
totally 7 points (the first point representing the complete letter
and the next six representing the defected ones) which are
marked by different colors in Figure 5c. Figure 5b shows the con-
ductance distribution of the well-trained network, from 0.1 to
1mS of MBI NW synapses, and the deviation compared with
simulation value has been shown in the right. The minor devia-
tion arose from conductance drift during testing and could not
hinder the recognition task. As shown in Figure 5c, the neuronal
outputs of each full letter and six defected letters, along y-axis,
were calculated. The MBI NW-based letter recognition model
achieved 100% accuracy as each letter neuron showed the largest
response to corresponding letter. If we check the letter neuron
output carefully, we will notice that the value for third defected
‘U’ is close to the letter neuron ‘H’. It is because the defected
letter ‘H’ with third line missing and the defected image ‘U’ with
sixth line missing resemble each other very closely.

Subsequently, to verify the generalization ability of MBI NW
ANN, we only involved full letters as training data and checked
the letter neuron outputs of defected letters. As illustrated in

Figure 5. Implementing emulation of Gestalt principle of closure by letter recognition using MBI NW-based neural network. a) Single-layered neural
network used for classifying the letters ‘H,K,U,S,T’ in their defected and complete form. b) Conductance distribution of the trained network within the
range from 0.1 to 1 mS (left). Deviation between the simulation and empirical conductance values for the single-layered neural network (right).
c) Graphical illustration of neuronal outputs corresponding to the complete and defected letters exemplifying Gestalt closure recognition task.
d) Illustration showing 1 complete letter K and four defected Ks. e) Conductance distribution (left) and deviation between simulated and empirical
conductance values of network used to complete recognition task corresponding to (d). f ) Neuronal output map exhibiting the difficulty in letter recog-
nition with increasing missing fragments of a letter.
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Figure 5d, there is one full letter ‘K’ and four defected ‘K’s with
more pixels missing from left to right, which increase the degree
of difficulty for recognizing the input image. In Figure 5e, we
have shown the conductance distribution and deviation of this
memristor-based network. Next, we utilized the trained MBI
NW-based neural network for classification of both full letter
and defected letters. As we can see in Figure 5f, the letter neuron
output ‘K’ is in the second row and with more pixels missing, the
response strength of letter neuron, ‘K’, diminishes while the
signal of other letter neurons becomes a little bit stronger. It fits
the narrative of the Gestalt principle of closure as both human
visual perception and MBI NW-based neuron network prefer a
relatively complete shape. However, the defected image will
make the classification harder but will never completely confuse
the classification results and will only decrease the probability of
certain labels. The successful letter recognition demonstration
using our perovskite memristor device proves the effectiveness
of MBI NW artificial synapses-based ANN for performing neuro-
morphic processing tasks emulating human cognitive traits.

3. Conclusion

In summary, we demonstrated a letter recognition scheme mim-
icking the cognitive learningmodel of Gestalt principle of closure
with MBI perovskite NW array-based artificial synapses. The
devices exhibited STP and LTP modes of learning with gradual
transformation from STP to LTP with increasing number of
stimulating voltage pulses. To explore the origin of intrinsic con-
ductance change in monocrystalline MBI perovskite, we carried
out initiatory AIMD simulations which revealed that it is the rota-
tion of MAþ clusters under electric field that triggers the charge
exchange betweenMAþ and Bi2I9

3�, causing the gradual conduc-
tivity modulation. 40 LTP conductance states with excellent
retention of >105 s and minimum variation <10% paved the
way for building the MBI NW synapse-based artificial neural net-
work to implement the Gestalt principle of closure. The network
thus formed achieved recognition task of 5 distinct fragmented
letters as it did for the complete version of the same 5 letters. Also
the network showed that much like the human brain, MBI NW
synaptic array could also distinguish one defected letter more
easily with lesser number of missing parts. All in all, this work
uplifts halide perovskite to be used in complex neuromorphic
processing tasks and opens up a new vista of exploring pattern
recognition emulating human cognition with memristor-based
ANNs, ultimately paving the way for alleviation of brittleness
associated with conventional AI systems by incorporating
abstraction and common sense comprehension.

4. Experimental Section

Materials: Methyl Ammonium Iodide (MAI) powder was purchased
from DYESOL.

Device Fabrication: 1.5 cm� 2 cm Al chips were electropolished to
remove the surface roughness. A highly ordered porous alumina membrane
or PAMwas obtained post a two-step anodization process using 0.2 M oxalic
acid at 40 V. The PAM was then barrier thinned by a voltage ramping down
process and subsequently metallic bismuth (Bi) was electrodeposited in the
channels to facilitate growth of the MBI NWs. Following a VSSR process
between methyl ammonium iodide (MAI) powder and electrodeposited

Bi at 180 °C and 300 sccm continuous Ar flow, the highly ordered MBI
NWs were obtained within the confines of the PAM walls. This process
of perovskite NW growth was reported by us recently.[37,38] ITO electrodes
of area 7.06mm2 were deposited as the top electrode via a radio frequency
(RF) sputtering process using a power of 200W and pressure of �0.23 Pa.
Finally, NOA81 UV-curable epoxy was used to package the devices.

TEM and FIB Characterization: The fabrication of the lamella for
trasnmission electron microscopy (TEM) imaging was carried out using
dual-beam focused ion beam (FIB)/FESEM system, FEI Helios G4 UX,
containing both focused Gaþ-ion beam and an ultrahigh-resolution
field-emission scanning electron column that can be used in synchrony.
The imaging and EDS study of the NWs were done using a transmission
electron microscope JEM 2010 (JEOL).

AIMD Simulation: The AIMD simulation was performed using the
Car–Parrinello molecular dynamics code integrated in Quantum
Espresso.[39,40] The simulation was performed using the NVT ensemble.
NVT ensemble refers to a group of systems whose thermodynamic state is
dictated by a fixed number of atoms (N), a fixed volume (V) and a fixed
temperature (T). The primitive cell structure of MA3Bi2I9 was first relaxed
for 2000 steps to reach a steady position. Then, a homogeneous finite
electric field described through the modern theory of the polarization
was applied along the z-axis. The self-consistency calculation was imple-
mented with the Perdue–Burke–Ernzerhof exchange-correlation functional
and ultrasoft pseudopotential was used to treat the core electrons for all
the atomic species. The convergence threshold for the self-consistency cal-
culation was set to 10�6 Ry and the Verlet algorithm was used to update
the atomic structure and electronic structure. The atom-PDoS and the
electron charge density calculation were calculated in first principles using
the Quantum Espresso. To perform the self-consistency calculation, the
core electrons were treated with the ultrasoft pseudopotential and the
Perdue–Burke–Ernzerhof functional was utilized as the exchange correla-
tion functional. The k-space grid sampling was generated using the
4� 4� 4 Monkhorst-Pack scheme and the electron convergence thresh-
old was set to 10�6 Ry.

Electrical Characterization: The artificial synaptic characterization of the
MBI NW devices, involving generation of electrical pulses of varying ampli-
tude, width, interval, and subsequent recording of output current, was car-
ried out using the arbitrary waveform generator module of the Keithley
4225 PMU and Keithley 4200 SCS systems. The tuning and recording
of the temporally stable LTP conductance levels and I–V characterization
were done with Keithley 2450 source meter and home-built LABVIEW pro-
grams. The off-chip training of the single-layered MBI NW-based neural
network and reading out the requisite output synaptic currents was per-
formed with the Keithley 2450 source meter, home-built and assembled
systems including LABVIEW programs, National Instruments controller,
multiplexer, and source meter.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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