ABSTRACT: Utilizing the short lifetime of hot electrons, ultrasensitive hot-electron photodetectors with fast response speed can have the potential to carve a niche among the photoconductive devices. Herein, high-performance WSe₂ photodetectors are fabricated based on hot-electron transportation, in which an ultrathin Al₂O₃ layer enables screening of high-energy hot electrons and promises ultrasensitive response to incident light, and the built-in electric field in Schottky junctions separates the photoinduced carriers for fast transient recovery. The hot-electron photodetectors demonstrated a high rectification ratio of 10⁷ and an extremely low dark current of 1 pA/μm with a high I₉/Idark ratio of 1.8 × 10⁶. Moreover, a high responsivity of 3.69 A/W and detectivity of 2.39 × 10¹³ Jones at an incident light power of 5.0 μW/cm² are simultaneously achieved. The present strategy offers an alternative route for ultrasensitive photodetectors with fast response.

KEYWORDS: hot-electron, tunneling, Schottky contact, built-in field, photodetector

INTRODUCTION

Low-power photodetectors with fast response and high sensitivity are urgent for both scientific and industrial applications.¹⁻³ Two-dimensional (2D) materials show potential as channel materials in optoelectronic devices due to their strong interaction with incident light.⁴⁻⁶ However, 2D material-based photodetectors typically exhibit low response speed and persistent current because of unintentionally introduced traps in ultrathin 2D channels as well as the long lifetime of trapped carriers.⁷⁻⁹ To address these issues for ultrasensitive and fast-response applications, photoinduced carriers should be efficiently separated and thereafter collected by rationally designing the device structure. Hot electrons can be excited in metal by photon absorption with energy above the Fermi level of metal, which is beneficial for fabricating photodetectors. Hot-electron photodetectors (HEPs) rely on photoinduced hot electrons across the energy barrier, creating a photoresponse current that enables the detection of incident light with energy below the bandgap of semiconductors. Therefore, HEPs can afford ultrahigh sensitivity under weak incident light with wide detective spectral regions.

In this work, ultrasensitive fast-response WSe₂ HEPs with Schottky contact are demonstrated. Benefiting from the ultrathin thickness (5 nm) of the Al₂O₃ insulating layer, the dark current is suppressed by the barrier at the Cr/Al₂O₃/WSe₂ junction.¹¹ Under light illumination, the photocurrent is generated by the photoinduced carriers across the Al₂O₃ tunneling layer. The emission energy of hot electrons is observably increased, and the carrier transport time is greatly reduced. Electrical transport measurements indicate a high rectification ratio of 10⁷. A high photoresponsivity (R) of 3.69 A/W, high detectivity (D*) of 2.39 × 10¹³ Jones at an incident light power density (P₉) of 5.0 μW/cm², and an I₉/Idark ratio of 1.8 × 10⁶ are obtained in the WSe₂ HEPs.

Received: August 18, 2021
Published: December 20, 2021
RESULTS AND DISCUSSION

Figure 1a–c shows the schematic illustrating the fabrication of the WSe$_2$ hot-electron device with asymmetric contact. First, Cr/Au (15 nm/50 nm) electrodes are defined on a silicon substrate (with 300 nm SiO$_2$) by photolithography, and then metal evaporation and lift-off processes are introduced. WSe$_2$ flakes are obtained by mechanical exfoliation with Scotch tape12 and then transferred onto the Au electrode to form ideal Schottky contact without the pinning effect.13 Subsequently, a 5 nm Al$_2$O$_3$ tunneling layer is grown by atomic layer deposition. The top electrode region is patterned by e-beam lithography (EBL), and thermal evaporation is used to deposit Cr/Au (15 nm/50 nm) electrodes. The band alignment of WSe$_2$ hot-electron devices is shown in Figure 1d under forward bias. The ultrathin Al$_2$O$_3$ dielectric acts as the tunneling layer for carrier injection and screens the homochromous high-energy hot electrons.14 Under forward bias, the Au/WSe$_2$ Schottky barrier height is reduced, leading to high photocurrent.15 Figure 1e shows the band diagram under reverse bias. In this case, the depletion width of the Schottky barrier is significantly enlarged. By inserting an Al$_2$O$_3$ insulating layer, reverse leakage current is highly suppressed as well. Under reverse-biased conditions, the strength of the net electric-field of the device is enhanced, which comparatively accelerate the separation of photoinduced carriers. Atomic force microscopy (AFM) is employed to measure the height profile information, as shown in Figure 1f and the inset, which indicates the height profile across the WSe$_2$ hot-electron devices.

Figure 2a is the optical image of the WSe$_2$ hot-electron diodes. Transfer curves of the WSe$_2$ HEPs are provided in Figure 2b, indicating obvious n-type on–off characteristics. Metal/semiconductor contact is critical for optical and electrical characteristics of Schottky diodes.16,17 Figure 2c is the transfer characteristic of the obtained WSe$_2$ hot-electron transistors with different contact types. Conventional multilayer WSe$_2$ transistors with thermally evaporated Cr/Au (15 nm/50 nm) (Cr/WSe$_2$/Cr) have ambipolar characteristics, which can be attributed to the Fermi pinning effect.18,19 The tunneling layer and transferred van der Waals Au contact (Au/WSe$_2$/Al$_2$O$_3$/Cr) afford an obvious n-type characteristic in this...
work. Figure 2d indicates the superior rectification ratio (RR) of 107, which is beyond the previously reported WSe2-based diode.20,21 Moreover, the reverse leakage current is significantly suppressed by the Schottky junctions and tunneling layer. The output current (I_{DS}) is plotted in Figure 2d. Figure 2e reveals the gate-dependent RR in the dark as a function of V_{DS}. The WSe2 hot-electron diode exhibits an ideality factor (n) of 1.17 (Figure S1). The dynamic rectifying characteristics are shown in Figure 2f. An evident rectified output signal is traced by a digital oscilloscope with a 100 Hz input sine waveform of a peak-to-peak value of 10 V. There is little distortion and slight voltage drop (5 V down to 4.28 V) in the output waveform. Moreover, the WSe2 hot-electron diode can still normally work under a wide range of frequencies, which makes it highly promising for primary element application in 2D material-based nanoelectronics.

Figure 3a shows the output characteristics at $V_G = 60$ V with temperatures ranging from 100 to 280 K. According to the traditional thermionic theory,22-24 as shown below

$$I_{DS} = AA^*T^2 \exp \left[-\frac{q}{k_BT} \left(\varphi_B - \frac{V_{DS}}{n} \right) \right]$$

where A is the area of the photodetector, A^* is the Richardson’s constant, q is the elementary electron charge, k_B is the Boltzmann constant, T is the temperature, V_{DS} is the applied source-drain bias, and n is the ideality factor. Obviously, the on-state current increases with temperature, indicating that the thermionic emission over Schottky barrier (SB) increases with current flowing. Therefore, the dominant tunnel transport is assisted by thermionic emission.25,26 Figure 3b shows the gate-dependent Arrhenius plot of the WSe2 HEPs, and the calculated total barrier height of the Au/WSe2/Al2O3/Cr is about 307 meV at $V_{DS} = 60$ V, as shown in Figure
S. Also, the corresponding band alignment of the HEPs with different gate bias values under light illumination is shown in Figure S3. Figure 3c is the linear output plots of the WSe₂ HEPs at V_{G} = 60 V under illumination. The photocurrent reached the peak value with 532 nm incident light illumination (Figure 3d), which is measured with a P_{light} of 100 mW/cm². Moreover, the on-off characteristics of WSe₂ HEPs are shown in Figure 3e, where the device exhibits reliable and fast on-off switching performance. Figure 3f is the high-resolution photoresponse of the HEPs, and the responsivity (R_{fi}) and recover (R_{focas}) times are 768 and 864 μs, respectively. Since the Al₂O₃ tunneling barrier can screen monochromatic hot electrons with high kinetic energy, the built-in electric field in the SB contact region further affords the short response of the WSe₂ HEPs, as shown in Figure S4. Therefore, the WSe₂ HEPs present superior speed among the previously reported 2D material-based photodetectors.²⁷,²⁸

The power-dependent photoresponse is measured to state the photoelectric effect of Schottky-contacted WSe₂ HEPs. Figure 4a indicates that the photocurrent obviously increases with P_{light}. The photoinduced carriers are generated and then transported through the ultrathin Al₂O₃ tunneling layer.²⁹ At an incident light power of 580 mW/cm², the P_{light}/I_{dark} ratio is 1.8 × 10¹⁰. The large P_{light}/I_{dark} value is ascribed to the thermally distributed hot carriers. In the previously reported work, photoinduced carriers were generated near the Au/WSe₂ junction region.¹⁵ The photoinduced carriers are recombined through the WSe₂ layer, and thus, the previous reported works present low photoresponsivity and long response time. In contrast, the vertical heterostructure in this work broadens the carrier distribution region, leading to a high P_{light}/I_{dark} ratio. In Figure 4b, the short current (I_{SC}) and open-circuit voltage (V_{OC}) simultaneously increase with P_{light}. By fitting as I_{SC} = A P_{light}^{β}, the HEPs present an ideal β value of 1.01, indicating the high quality of the interfaces.³⁰,³¹ Figure 4c is the output electrical power (P_{OUT}) versus V_{DS} with varied incident light density. With a continuous shift of I_{DS} – V_{DS} characteristics, the peak P_{OUT} is increased with P_{light}. The maximum output of electrical power (P_{max}) is indicated in Figure 4d, and a typical P_{max} = 0.15 μW is obtained. Also, the fill factor (FF) and power conversion efficiency (PCE) are 0.68 and 16.1%, which are obtained with P_{light} = 576 mW/cm², respectively. Figure S5 is the power-dependent FF and PCE, and both FF and PCE decrease with P_{light}. As shown in Figure 4e, both R and D* decrease with P_{light}. Based on the measured low-frequency noise in Figure S6, a high R of 3.69 A/W and D* of 2.39 × 10¹³ Jones are simultaneously obtained at an ultralow P_{light} = 5.0 μW/cm², which is superior to those of the previously reported works.³²–³⁴ Although the scattering of photoinduced electrons would degrade the responsivity with high incident power, due to the dominant hot electron transformation mechanism of the photodetectors, negligible changes of responsivity are observed when P_{light} is above 1 mW/cm², which is superior to previously reported devices.³⁵,³⁶ As shown in Figure S7, the HEPs present a high signal-to-noise ratio above 10⁶ as well as desirable linear dynamic range (LDR) values. The external quantum efficiency (EQE) decreases with P_{light} and reaches a peak value of 859%, as shown in Figure 4f. The built-in field in Schottky junctions facilitates the injected photoinduced electron transportation in WSe₂, and the applied voltage pulls out the electrons in WSe₂, leading to an increased photocurrent, and this affords the high EQE. Photogain (G) is calculated to be 5.8, which further indicates that the photoinduced carriers circulate several times before recombination.

CONCLUSIONS

In summary, Schottky-contacted WSe₂ HEPs with ultrahigh sensitivity and fast response are developed. The hot electrons promise ultrasensitive response to incident light, and the built-in electric field in Schottky barriers at the contact region spontaneously and rapidly separates the photoinduced carriers before they lose their excess energy. Therefore, the photodetectors present fast response speed even under weak incident light. Photoinduced hot electrons in WSe₂ are transported by tunneling, leading to a high rectification ratio. Also, the reverse leakage current is suppressed to 1 pA/μm by the large depletion region width of the Schottky barrier. This work presents an alternative strategy for developing ultrasensitive and fast future electronic and optoelectronic devices.

METHODS

Device Fabrication

Cr/Au electrodes were deposited on a silicon substrate with a 300 nm SiO₂ layer using conventional photolithography followed by thermal evaporation. Then, WSe₂ flakes were peeled with Scotch tape and transferred onto a Cr/Au electrode to form ideal Schottky contact without the pinning effect. After that, a 5 nm Al₂O₃ tunneling layer was grown by atomic layer deposition (ALD). The growth rate is 1.0 Å per cycle as follows: Trime thyal aluminum (TMA) is used as a precursor source, while the H₂O source was kept at room temperature. The flow rate of the Ar carrier gas was 50 sccm. The pulse times for TMA and H₂O are 0.1 and 0.4 s, and the post-purge times are 12 and 18 s, respectively; subsequently, the copolymer (MMA) was spin-coated at a speed of 3000 rpm and baked on a hot plate at 150 °C for 1 min, and then polymethyl methacrylate (PMMA, 495k) was spin-coated at 3000 rpm and baked at 150 °C for 5 min. Finally, the top Cr/Au (15 nm/50 nm) electrode was fabricated by EBL, e-beam evaporation, and lift-off processes.

Material Characterization and Device Measurement

Optical images were obtained by an Olympus BX53, and the thickness of Al₂O₃ and WSe₂ with the corresponding AFM image was obtained on a Park XE7. EBL was carried out on a Raith pattern generator and SEM combination. Electrical measurements were carried out by employing a Lake Shore TTPX probe station and Agilent B1500A semiconductor parameter analyzer. The light sources were lasers with wavelengths of 375, 457, 532, 660, 808, and 914 nm, respectively.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsphotonics.1c01256.

Idi​ality factor of the WSe₂ diode; extracted SB height of the hot-electron device; band diagram of the WSe₂ hot-electron diode under different gate voltages; comparison of the rectification behavior and photoresponse without and with the Al₂O₃ layer; light power-dependent FF and PCE; low-frequency noise of the hot-electron devices; and extracted SNR and LDR values of the WSe₂ hot-electron photodetectors (PDF)
AUTHOR INFORMATION

Corresponding Authors
Xingqiang Liu — Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China; orcid.org/0000-0002-3598-8755; Email: liuxq@hnu.edu.cn

Lei Liao — Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China; orcid.org/0000-0003-1325-2410; Email: liaolei@whu.edu.cn

Authors
Mingliang Zhang — Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China

Xinpei Duan — Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China

Sen Zhang — Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China

Chang Liu — Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China

Da Wan — School of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan 430081, China

Guoli Li — Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China

Zhen Xia — Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China

Zhiyong Fan — Department of Electronic & Computer Engineering, Hong Kong University of Science & Technology, Hong Kong SAR 999077, China; orcid.org/0000-0002-5397-0129

Complete contact information is available at: https://pubs.acs.org/10.1021/acsphotonics.1c01256

Author Contributions
L.L. and X.L. conceived and designed the experiments. M.Z. and X.D. prepared the samples and finished related tests and data analysis. M.Z. and X.L. wrote the manuscript. S.Z. and C.L. finished the 3D drawing design. D.W., G.L., Z.X., and Z.F. present the suggestions for improving the quality of this work and revised the manuscript. Related tests and result analysis were done by M.Z. using protocols provided by L.L. All authors examined and commented on the manuscript.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the National Key Research and Development Program of Ministry of Science and Technology (no. 2018YFA0703700), China National Funds for Distinguished Young Scientists Grant 61925403, the National Natural Science Foundation of China (grant nos. 61851403 and 51872084), Natural Science Foundation of Hunan Province (grant nos. 2020JJ1002 and 2021JJ20028), and partly by the Key Research and Development Plan of Hunan Province under grant nos. 2022WK2001 and 2018GK2064.

REFERENCES

