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Biomimetic olfactory chips based on 
large-scale monolithically integrated 
nanotube sensor arrays
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Wenhao Ye1,2, Wenying Tang1,2, Zichao Ma    1,9, Beitao Ren    1,3, 
Daquan Zhang    1,2,3, Zhilong Song1,2,10, Yucheng Ding    1,3, Zhenghao Long1,3, 
Swapnadeep Poddar1, Weiqi Zhang1,2, Zixi Wan1,2, Feng Xue1,2, Suman Ma1,4, 
Qingfeng Zhou5, Geyu Lu8, Kai Liu    6 & Zhiyong Fan    1,2,3,7 

Human olfactory sensors have a large variety of receptor cells that generate 
signature responses to various gaseous molecules. Ideally, artificial 
olfactory sensors should have arrays of diverse sensors. However, it is 
challenging to monolithically integrate large-scale arrays of different 
high-performance gas sensors. Here we report biomimetic olfactory chips 
that integrate nanotube sensor arrays on nanoporous substrates with up to 
10,000 individually addressable sensors per chip. The range of sensors is 
achieved using an engineered material composition gradient. Supported 
by artificial intelligence, the chips offer a high sensitivity to various gases 
with excellent distinguishability for mixed gases and 24 distinct odours. We 
also show that the olfactory chips can be combined with vision sensors on a 
robot dog to create a system that can identify an object in a blind box.

Artificial olfaction and electronic noses (e-noses) aim to emulate 
the intricate mechanism of the biological olfactory system to effec-
tively discern complex odorant mixtures. Such systems, which have  
been under development for decades, are of use in a wide-range  
array of applications, including food, environmental, medical and 
industrial process control1. A range of commercial e-noses have already  
been developed, including AerNos (https://www.aernos.com),  
Alpha MOS Technologies (https://www.alpha-mos.com), Sen-
sigent (https://www.Sensigent.com), Aryballe Technologies  

(https://aryballe.com) and Cyrano Sciences (https://cyranosciences.
com). However, existing e-nose systems still fall short of their biologi-
cal counterparts2–8.

In practical applications, the primary challenges include the dif-
ficulty in miniaturizing the system and poor recognition capabili-
ties in determining the exact gas species and their concentrations 
within complex odorant mixtures (as opposed to single-gas species). 
Addressing these deficiencies of e-nose systems is important for exist-
ing applications but could also be of use in intelligent systems, such as 
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is difficult21–24. The methodologies explored to construct diversified 
sensor arrays are relatively primitive. These methods primarily involve 
drop-coating, printing, chemical vapour deposition or physical vapour 
deposition of different sensing materials (such as polymers, MOXs and 
functionalized carbon nanotubes) sequentially13,21–26. Sensing films 
produced by drop-coating or printing methods often exhibit poor 
mechanical strength, whereas sensing films generated by chemical 
vapour deposition or physical vapour deposition tend to have inferior 
sensing performance because of the small surface area-to-volume ratio 
in the dense sensing film13,26.

Attempts have been made to tackle these issues by employing 
techniques such as glancing angle deposition to create nano-rod 
nanostructures with enhanced sensing properties. However,  
ensuring consistent reproducibility for mass production  
remains challenging27. Moreover, it is difficult to create hundreds 
of different types of gas-sensing materials, regardless of whether 
organic or inorganic materials are used, and most sensors use similar 
materials with different dopants. Efforts have been made to develop 
chips based on a large sensor array with a temperature gradient and 
a gradient of overlapping membrane layers (the Kamina electronic 
nose)26. However, despite their intriguing design, these devices have 
not attained commercial success. The key challenges associated 
with such devices are their high power consumption and limited  
diversity14. Furthermore, the current algorithms used in e-nose 
systems are relatively singular and difficult to adapt to different 
applications28.

In this Article, we report biomimetic olfactory chips (BOCs) based 
on large monolithically integrated sensor arrays (Fig. 1f,g). Each BOC 
comprises a high-density array of vertical MOX nanotubes with a 
well-defined three-dimensional (3D) nanostructure and a range of 
pixel types. It is supported by a peripheral signal read-out circuit and 
advanced neural network algorithms. The number of sensors in a BOC 
ranges from 100 to 10,000 to mimic the diversity of biological olfac-
tory receptors. The monolithic 3D chemical sensor-array chip was 
fabricated using atomic layer deposition (ALD) of MOX and subsequent 

advanced robots and portable smart devices, that have applications 
in, for examples, security patrols and rescue operations.

Mammals can detect and differentiate millions of odours. This 
occurs through a distinctive encoding-combination strategy employed 
by the olfactory receptors and neural networks within the brain9–11. The 
olfactory system in humans (Fig. 1a–d) detects odour/gas molecules 
that dissolve in the mucus on the olfactory epithelium. These molecules 
bind to different olfactory receptors on the cilia of olfactory neurons, 
instigating an electrical response. This response is transmitted through 
the olfactory nerves and fibres to the olfactory bulbs for processing. 
Signals are then transmitted by the olfactory bulbs to the olfactory 
cortex for comprehensive processing that discriminates the odours. 
Having more types of odour receptor means having a more powerful 
sense of smell. Canines have, for instance, about 1,000 types of olfac-
tory receptors, making their olfaction superior to that of primates 
(Fig. 1e)12.

A smart chemical-sensing unit—the key component that deter-
mines the performance of an e-nose system—is predominantly a gas 
sensor array with a variety of discrete gas sensors or a monolithically 
integrated chip1,13,14. Compared to biological olfactory systems, these 
small sensor arrays have a restricted range of ‘olfactory receptors’, 
which limits system performance. Mainstream gas sensors, regardless 
of their physical or chemical working principle (which include metal 
oxide (MOX) sensors, polymer sensors, surface acoustic wave sensors, 
quartz crystal microbalance sensors, electrochemical sensors and 
nondispersive infrared sensors), are typically individual sensors with 
large form factors15–20. Many of the devices are power hungry and have 
poor selectivity; some are also characterized by a narrow selection 
band (electrochemical and nondispersive infrared sensors) and can 
detect only a single type of gas (Supplementary Table 1). These sensors 
are designed for specific applications, and hence their performance is 
not optimal for generic tasks.

State-of-the-art microelectromechanical systems (MEMS) have 
enabled the monolithic integration of millions of identical sensors, 
but creating a diversity of sensors beyond hundreds on a single chip 
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Fig. 1 | Comparison of the mammalian olfactory system and a BOC system. 
a, Illustration of odour/gas molecules. b, Schematic of the human olfactory 
system consisting of the olfactory epithelium and the olfactory bulb. c, Structure 
of the olfactory cortex. d, Illustration of the recognition result. e, Summary of 
the numbers of genes expressed in intact olfactory receptors from different 

mammals: macaque, human, dog and rat. f, Structure of a monolithic BOC with 
the correlated circuit. g, Response patterns for different odour/gas molecules 
from the monolithic BOC and the algorithm design for recognizing the response 
patterns.
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suspended mask-assisted sputtering (SMAS) of diverse MOX. A vertical 
sensor structure with a precisely controlled nanoscale sensing-material 
layer was constructed on nanotubular porous alumina membrane 
(PAM), enabling excellent detection sensitivity to ppb-level concentra-
tions of a molecular gas. The SMAS method forms a multi-component 
interfacial (MCI) layer with a gradient distribution of MOX elements on 
the free-standing PAM, which plays a key role in creating the range of 
sensors. The vertical device structure allows the use of top-to-bottom 
crossbar electrodes to maximize the number of pixels in the miniatur-
ized structure.

We fabricated a 100 × 100 sensor array with individual sensors 
of size 10 × 10 µm2. We also examined different scales of integration, 
including 10 × 10 and 20 × 20 sensors. The pixel diversity of the BOC 
was used to generate a set of signature patterns for different gas or 
odour molecules (Fig. 1g). Using neural network algorithms, the BOC 
can recognize eight gas species at various concentrations in different 
humidity backgrounds with a prediction accuracy of up to 99.04%. 
The system can accurately recognize the components and concentra-
tions of gas mixtures and can recognize 24 typical odours. To illustrate 
the potential of our approach, we installed a BOC into a quadrupedal 
mobile robot (a robot dog), thus allowing it to identity the odour in a 
blind box.

BOC device fabrication
Figure 2a is a schematic illustration of the structure of our BOC device. 
It was designed for high-performance gas detection and reliable dis-
crimination. The chip comprises five major components: an MCI layer 
on top of the PAM substrate, a PdO/SnO2 nanotube sensing-material 
layer in the PAM channel, the top and bottom sensing electrodes, an 
insulating layer and a Pt heater. The fabrication method for the device is 
not CMOS compatible (Extended Data Fig. 1). Figure 2b shows a 10 × 10 
sensor array with a crossbar electrode configuration. The size of the 
individual sensors depends on the intersection area of the top and 
bottom electrodes, which is 140 × 140 µm2 (Fig. 2c). Thus, 100 sensors 
encompass an area of about 8 mm2. In the magnified scanning elec-
tron microscopy (SEM) top-view image (Fig. 2d), the characteristics 
of the honeycomb-like structure are clear. The diameter of the pores 
is about 300 nm. Thus, it has a large surface-to-volume ratio, which 
facilitates the access of gas molecules and the interaction between 
the gas molecules and the sensing material to give excellent sensing 
performance29–31. The cross-sectional view of the bottom region of the 
chip (Fig. 2e and Supplementary Fig. 1) clearly shows the vertical and 
ordered nanotube structure. A dense insulating SiO2 layer with a thick-
ness of approximately 2.5 µm delivers excellent electrical insulation 
between the signal electrode and the underlying Pt heating electrode. 

3.83.43.02.62.21.81.41.00.60.2
3.83.43.02.62.21.81.41.00.60.2 Y positio

n (m
m)

In
te

ns
ity

X position (mm)

Zn+

W+

In+

Ni+

In
te

ns
ity

20 35 50 65 80

2θ (degree)

SnO2 (tetragonal)

PdO (tetragonal)

PdO/SnO2 nanotube
sensing layer

Top electrodes

Multicomponent interfacial layer

PdO/SnO2 nanotube 
           sensing layer

Bottom electrodes

Insulating layer

Pt heater

a

500 µm 

b

100 µm 

c

300 nm 

Top view of deviced

5 µm 

PAM

SiO2
Pt

e

20 35 50 65 80

Muticomponent
  interfacial layer

ZnO (hexagonal)

NiO (cubic)

In2O3 (cubic)

WO3 (monoclinic)

ZnxWO3 (monoclinic)

NiWO4 (monoclinic)

In0.3WO3 (hexagonal)

In2O3(ZnO)17 (rhombohedral)

2θ (degree)

In
te

ns
ity

g
Elemental distribution

f

i j k

200 nm

h
Al O Sn Pd

482484486488490492494496498500

In
te

ns
ity

 (c
ps

)

Binding energy (eV)

Raw intensity
Sn4+ 3d 3/2
Sn4+ 3d 5/2

332334336338340342344346
In

te
ns

ity
 (c

ps
)

Binding energy (eV) 

Raw intensity
PdO 3d 3/2
Pd 3d 3/2
PdO 3d 5/2
Pd 3d 5/2

Fig. 2 | Structural analysis of the BOC device. a, Schematic of the monolithic 
BOC. b, Optical image of the top view of the BOC. c, Optical image of a single 
pixel in the BOC. d, SEM image of the top view of the BOC. e, SEM image of a cross 
section of the BOC. The different colours indicate the different components 
(bottom region). f, Spatial distribution of elements in the MCI layer visualized 

using the loci of ToF-SIMS depth profiles. g, XRD pattern of the MCI layer. h, TEM 
and EDS mapping of a single channel of the PdO/SnO2/PAM. i, XRD pattern of the 
sensing-material layer (PdO/SnO2). j,k, High-resolution XPS spectra of Sn 3d (j) 
and Pd 3d (k) of the sensing-material layer (PdO/SnO2). cps, counts per second.
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The incorporation of a Pt heater is imperative for elevating the tem-
perature of the 3D sensor-array chip to achieve optimal sensitivity.

The manufacturing process utilized in our study boasts a distinc-
tive advantage of producing pixels with a wide range of responses within 
a single 3D sensor-array chip. This was achieved by using multi-step 
SMAS to construct an MCI layer, which effectively governs the transport 
of carriers between the top electrode and the sensing-material layer. 
This multi-step SMAS method created a two-dimensional (2D) MOX 
composition gradient in the MCI layer (Supplementary Figs. 2–4). 
By tuning the distance between the suspended mask and the PAM 
substrate and also the relative position of the mask on the PAM, four 
different MOXs (ZnO, NiO, In2O3 and WO3) were successively depos-
ited onto the PAM surface after the ALD of the Pd/SnO2 nanotube 
sensing-material layer (Supplementary Text 1). The spatial distribu-
tion of elements in the MCI layer was measured using time-of-flight 
secondary ion mass spectrometry (ToF-SIMS). The SIMS depth profiles 
were acquired in 16 regions with a 4 × 4 array, and the data were used 
to calculate the ion concentrations (Supplementary Figs. 5–7). Each of 
the four cations (Zn+, Ni+, In+ and W+) has a gradient distribution along 
the four orthogonal directions in 2D space; thus, they constitute dif-
ferent pixels in the MCI layer (Fig. 2f and Supplementary Figs. 8 and 9). 
The crystalline phases of the MCI layer were verified by X-ray diffrac-
tion (XRD) (Fig. 2g). New compounds, including ZnxWO3 (monoclinic, 
JCPDS no. 43-1035), NiWO4 (monoclinic, JCPDS no. 51-225), In2.2WO3 
(hexagonal, JCPDS no. 37-30) and In2O3(ZnO)17 (rhombohedral, JCPDS 
no. 43-621), were formed during postannealing at 450 °C in addition to 
the original four oxides (Supplementary Fig. 10).

The sensing-material layer in the PAM channels has a key role in 
determining the final performance of the 3D sensor-array chip (Supple-
mentary Text 1). ALD was employed to achieve the uniform deposition 
of materials in the PAM channels30. SnO2 and Pd layers were successively 
deposited and annealed at 450 °C to improve their crystallinity. The 
uniformity of the thin film was verified by the uniform distribution of 
elemental Sn and Pd in a single PAM channel, as shown in transmission 
electron microscopy (TEM) and energy-dispersive X-ray spectroscopy 
(EDS) mapping (Fig. 2h). The crystal structure and composition of the 
sensing-material layer were determined by XRD, X-ray photoelectron 
spectroscopy (XPS) and high-resolution scanning TEM. From these 
analyses, the tetragonal structures of SnO2 ( JCPDS no. 41-1445) and 
PdO ( JCPDS no. 41-1107) were confirmed, which ultimately formed 
the PdO/SnO2 heterojunction sensing-material layer (Fig. 2i–k and 
Supplementary Figs. 11 and 12).

Device measurement and consistency validation
The peripheral read-out circuit in the BOC was designed to solve the 
sneaky path issue that is induced by the crossbar structure of the elec-
trodes (Fig. 3a and Supplementary Figs. 13 and 14)32. The resistance of 
each pixel in the monolithic 3D sensor-array chip can be read out accu-
rately (Supplementary Fig. 15). To verify the functionality of our BOC, 
a 10 × 10 sensor-array chip was chosen as a proof of concept. The chip 
was suspended and bonded onto a dual in-line ceramic package to give 
a good electrical contact and good heat dissipation. For the working 
temperature of 175 °C used in this work, the power consumption was 
about 240 mW (Supplementary Fig. 16). Each pixel responded differ-
ently to different gases, which are reflected in the resistance and gas 
response. The resistances of the 10 × 10 sensor-array chip in dry air at 
175 °C (Fig. 3b and Supplementary Fig. 17) vary in the mega-ohm range 
with a coefficient of variation (CV) of 48.79%. The statistical distribution 
of the resistances of pure SnO2 (CV = 7.12%) and PdO/SnO2 (CV = 7.98%) 
sensor-array chips without the MCI layer was also evaluated to assess 
the availability of the MCI layer.

To substantiate the consistency of our manufacturing process, 
twelve 100-pixel BOCs were prepared and tested. We, thus, investigated 
the device-to-device repeatability. Ten sensors at fixed positions, 
namely the diagonal sensors in the arrays (sensors 1, 12, 23, 34, 45, 56, 

67, 78, 89 and 100), were selected. For each sensor from the 12 BOCs, 
we calculated the average value, standard deviation and CV for the 
resistance and gas response. The maximum CVs for the resistance 
and gas response were 17.7% and 17.6%, respectively, demonstrating 
the comparatively excellent repeatability (Extended Data Fig. 2, Sup-
plementary Fig. 18, and Supplementary Tables 2 and 3).

To examine the perception of our BOC to chemical molecules, 
eight gas species (acetone, carbon monoxide, ethanol, formaldehyde, 
nitrogen dioxide, toluene, hydrogen and isobutylene) with concentra-
tions ranging from 20 ppb to 4 ppm were tested. We employed the 
Pearson correlation matrix to evaluate the degree of linear correla-
tion amongst data points to quantitatively elucidate the interrelation 
of pixels in the sensor-array chip (Supplementary Fig. 19). The result 
illustrates that there was a discernible correlation between adjacent 
pixels in the sensor-array chip. Furthermore, a gradual increase in 
diversity can be observed with increasing distance from the initial pixel, 
thereby validating the overall diversity of the entire sensor-array chip in 
alignment with the gradient material composition design of our BOC.

The dynamic sensing response of ten sensing pixels along the 
diagonal line of the BOC (Fig. 3a) to 1 ppm to 100 ppb acetone is shown 
in Fig. 3c, which indicates the reliability of the gas responses and the 
variable sensing behaviours of the different pixels. Indeed, some sen-
sors have a drifting baseline and relatively long response/recovery 
times, mainly due to the relatively low working temperature (175 °C). 
Commercial MOX sensors are usually operated at 300–400 °C to 
achieve good gas response and baseline stability. Although our BOC 
was operated at 175 °C, it has an excellent response to ppb-level gas 
concentrations (Supplementary Table 4). To validate the effect of work-
ing temperature on sensing properties, we systematically tested the 
BOC at different temperatures, namely, 125, 175 and 250 °C (Extended 
Data Fig. 3 and Supplementary Fig. 20). The response/recovery times 
gradually decreased with an increase of the working temperature. The 
gas response reached a maximum at 175 °C. After a comprehensive 
consideration of these parameters, particularly the response/recovery 
time, gas response and power consumption, 175 °C was chosen as the 
optimal working temperature for our BOC.

To visualize the features of the entire BOC, the response values 
were normalized to a greyscale between 0 and 255 by choosing the 
responses to 5 ppm H2 as the ceiling value. The results are presented 
as heat maps, which show the response patterns for different concen-
trations of gas species under various humidity conditions (Fig. 3d and 
Supplementary Figs. 21–37). For a certain gas molecule, the normalized 
response patterns were highly consistent over a range of concentra-
tions and humidity levels, so that we could recognize the gas species 
accurately and efficiently (Supplementary Fig. 38). Furthermore, arti-
ficial intelligence algorithms were developed to support the BOC by 
processing the response patterns.

Single-gas discrimination with the BOC system
The BOC that we developed in conjunction with the algorithm consti-
tutes a biomimetic olfactory system. It is a promising tool for mimicking 
the function of mammalian olfaction. We employed an end-to-end con-
volutional neural network (CNN) to classify the gas from the response 
patterns (Fig. 3e and Supplementary Text 2)2,33,34. The actual and pre-
dicted gases are shown in the confusion matrix in Fig. 3f, which demon-
strates the high prediction accuracy of our model. We then analysed the 
misclassified data. A misclassification originates mainly from the low 
concentrations of gas species with similar functional groups, such as 
acetone and formaldehyde. Encouragingly, for the entire dataset (4,160 
samples) of eight gases with different concentrations and humidity 
levels, the optimized model reached a prediction accuracy of 99.04% 
and saturated after 500 training epochs. The training loss (testing loss) 
dropped from the initial 1.32% (1.80%) to 0.02% (0.03%), confirming 
the robustness and reliability of the end-to-end CNN model utilized 
for classifying gas response patterns (Fig. 3g).
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To further prove the robustness of the system, we separated the 
training and testing data by the time of collection. We kept testing the 
BOC chip for three months. The sensing data in the first month were 
used as the training dataset, and sensing data from the second and third 
months were used as testing datasets (Supplementary Figs. 39–41). 
The prediction accuracies in the second and third months were 98.55% 
and 96.67%, respectively (Extended Data Fig. 4). Although a small 
degradation of performance was observed during this long-term test, 
the prediction accuracy was still sufficient to satisfy the classification 
requirements.

Scale of sensor array versus gas classification 
accuracy
We designed and conducted experiments on accuracy versus the scale 
of the sensor array to illustrate that increasing the variety of sensors 
plays an instrumental role in achieving higher accuracy. To guarantee 
that the chosen sensors sufficiently embody the material composition 
and discrimination functions of the entire chip, we used sensors evenly 
distributed throughout the chip (Supplementary Text 2). The dataset 
used for analysis comprised 4,160 samples. A prediction accuracy of 
approximately 80% was achieved using only four sensors (Supple-
mentary Fig. 42). However, the limited dataset consisted of only eight 

gas species with various concentrations and humidity levels, which 
accounted for the observed prediction accuracy.

To address this limitation, the remaining ~20% of the data that 
could not be classified by the four sensors were used as a new data-
set for analysis. To ensure a fair comparison of the accuracy versus 
number of sensor tests, the size of the CNN model and the method for 
dividing the data were fixed (Supplementary Text 2 and Supplemen-
tary Fig. 43). Gases with different humidity levels were considered 
as different species in this model, resulting in a total of 37 species. 
Figure 3h shows that the accuracy improved rapidly from 15.98% 
(single sensor) to 93.83% (100 sensors) as the number of sensors 
used for classification increased, although the accuracy became satu-
rated after the number of sensors exceeded 25. If the scenario were 
more complicated with more gas species and larger concentration 
 ranges, the number of sensing pixels needed to reach saturation 
would be higher. Overall, using more sensors will certainly yield 
higher accuracy, which could be extended as a generic method to 
improve the accuracy and reliability of sensor-array systems. Of 
course, if the number and diversity of pixels (where diversity refers 
to the receptor types) were increased, the more complicated read-
ing out of the signal and data redundancy would have to be taken 
into account.
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under dry air as the background gas at 175 °C. d, Normalized response patterns 
(greyscale from 0 to 255) for 1 ppm of different gas species under dry air and 50% 
relative humidity (RH) air as the background gas at 175 °C. e, Schematic of the 
CNN for gas classification. f, Confusion matrix of the actual class and predicted 

class when recognizing eight gases (A, acetone; C, carbon monoxide; E, ethanol; 
F, formaldehyde; N, nitrogen dioxide; T, toluene; H, hydrogen; I, isobutylene). 
g, Curves for predicted accuracy, training loss and testing loss versus epochs 
when recognizing eight kinds of gas. h, Prediction accuracy versus the number 
of sensors. The accuracy increases with more sensors. The sample size is 50. The 
error bars indicate the standard deviation (s.d.). Data are presented as mean 
values ± s.d. FC, fully connected; ReLU, rectified linear unit.
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Deconvolution of a gas mixture with the BOC 
system
Biological olfactory systems can struggle to identify the composition 
and concentration of various gas mixtures. To tackle this challenge and 

demonstrate the capability of our BOC, we conducted a quantitative 
analysis of gas mixtures with two of four typical gases (ethanol, tolu-
ene, formaldehyde and carbon monoxide) in different ratios (Fig. 4a).  
The dataset included 96 kinds of mixtures with concentrations ranging 
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Fig. 4 | Classification of gas mixtures by the BOC. a, Experimental design of 
gas mixtures. b, Normalized response patterns for the mixtures with different 
concentrations of gases. c, Concentrations of gas mixtures predicted by a fully 
connected neural network using the first month’s sensing data as the training 

dataset and the second month’s sensing data as the testing dataset. Data number 
refers to the number of data we used for algorithm processing. d, Average relative 
error between predicted concentrations and actual concentrations. conc., 
concentration.
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from 200 to 800 ppb. As illustrated in Fig. 4b, the response patterns 
changed smoothly with increasing concentration. Taking the mixture 
of toluene and ethanol as an example, with an increase in the concen-
tration of ethanol, the edge regions of the response patterns gradually 
became brighter, which is the same as when the two gases are present 
separately. However, since the response of the sensors to the mixture 
is not simply the sum of two responses from the separate gases due to 
the competitive adsorption and cross-reactions on the surface of the 
sensing material, the different response patterns make it possible for 
an algorithmic model to distinguish the components and concentra-
tions of the mixture.

As in the single-gas species tests, we separated the training and 
testing data by time of collection to determine the robustness of the 
system in a quantitative analysis of gas mixtures (Supplementary 
Figs. 44–47). The CNN that we utilized before is proficient in feature 

extraction. However, when applied to regression, such as predicting gas 
concentrations, the parameterization is time-consuming and computa-
tionally intensive. Here, instead of feeding all the raw data into the neu-
ral network model, which is complicated and time-consuming, the gas 
response patterns were first dimensionally reduced to ten-dimensional 
vectors by principal component analysis, which both reduced the 
noise and improved the performance of the model. Subsequently, a 
five-layer fully connected neural network was trained end to end to 
predict the concentrations of two-gas mixtures. The model has four 
output neurons to represent the concentrations of ethanol, toluene, 
formaldehyde and carbon monoxide.

Figure 4c illustrates the predicted concentrations using the first 
month’s sensing data as the training dataset and the second month’s 
sensing data as the testing dataset (results for the third month’s sensing 
data are shown in Supplementary Fig. 48). The results of a statistical 
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Fig. 5 | Odour classification with the BOC and fusion of olfactory and vision 
sensors in a robot. a, Odour species chosen for recognition by a BOC with 100 
sensors. DMF, dimethylformamide. b, Normalized response patterns to the 24 
odours in a. c, Classification of 24 odours by t-distributed stochastic neighbour 
embedding (t-SNE) and a support vector machine (SVM) with linear kernel 

algorithms. d, Configuration of the BOC system installed on a quadruped robot 
for blind box differentiation. e, Recognition of boxes by computer vision, that 
is, the camera. f, Recognition result of our BOC system. g, Real-time recorded 
resistance signal of sensor 61.
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analysis of the predicted concentrations are shown in Fig. 4d. The aver-
age relative error between the predicted concentration and the actual 
concentration of mixtures was calculated as follows:

ΔR =
Mean (Abs(PregasN − ActgasN))

ActgasN
× 100%, (1)

where PregasN  is the average of the predicted concentrations of gas N 
and ActgasN  is the actual concentration of gas N. Here N represents 
ethanol, toluene, formaldehyde or carbon monoxide. The maximum 
ΔR increased from 7.05% to 8.12% for 200 ppb of a gas species between 
the data for the second and third months. For the highest concentration 
(800 ppb), ΔR was lower than 3%, which proves the accuracy and reli-
ability of our BOC for gas-mixture recognition.

Real-time odour classification with the BOC 
system
We are surrounded by various types of odours, each odour of which 
may have a complex gas composition. The identification and perception 
of odours can not only regulate our emotions, but also sometimes is a 
matter of life and death. To demonstrate the capability of our BOC sys-
tem to classify odours, we selected 24 objects with different odours, as 
listed in Fig. 5a. One hundred gas response patterns for each odour were 
collected after the signal had stabilized (Fig. 5b and Supplementary  
Fig. 49). To view the distribution and relationship of the 24 odours 
tested by the BOC system, we employed t-distributed stochastic neigh-
bour embedding to convert the 100-dimensional Euclidean distance 
into 2D coordinates using the 30 nearest neighbours among the whole 
dataset according to the conditional probability35. Furthermore, we 
adopted a support vector machine algorithm with a linear kernel to 
divide up the decision space. Each odour is represented by one num-
ber and one colour (Fig. 5c and Supplementary Fig. 50). As a result, all 
24 odours are distributed in the space. A real-time demonstration of 
the BOC system identifying a quantity of red wine and a piece of an 
orange is shown in Supplementary Video 1. The result substantiates 
the excellent classification capability of our BOC system. In addition, 
the capability of our BOC system to identify the freshness or safety of 
food is also validated with a time-dependent test of a sliced orange 
(Supplementary Figs. 51 and 52).

Fusion of olfactory and vision sensors on a robot
Elevating intelligence is an inevitable trend in the development of 
advanced robotics. Sensor technology is one of the foundations of a 
robotic implementation. Multi-sensor fusion combines information 
from different sensors to provide a more accurate and reliable per-
ception of the external environment, thus improving the rationality 
of robot decision-making. Even though researchers have integrated 
many different types of sensors on robots, such as temperature sen-
sors, tactile sensors, sound sensors and various kinds of light sensors, 
olfactory sensors have rarely been used. In fact, equipping a robot 
with a sense of smell can make it much more intelligent and expand 
its range of applications.

To demonstrate the potency of our BOC system for advanced 
robotics, as shown in Fig. 5d, a BOC system was installed on a robot dog 
to bestow the olfactory function on the robot (Supplementary Text 
3). To examine the functionality of the robot, five similar boxes were 
placed in a line. Two of them contained objects with different odours 
(a sample of red wine or a piece of an orange) (Extended Data Fig. 5). 
It is impossible to identify the content of these boxes with only vision 
sensors (cameras) (Fig. 5e). However, with an olfactory function (BOC 
system), the robot first recognizes the shape of a box with its vision. It 
moves from box to box and can identify the internal objects (red wine, 
a piece of orange or empty) utilizing its olfaction capability (Fig. 5f and 
Supplementary Video 2). Figure 5g depicts the real-time signal from 
a typical sensor (no. 61) from our BOC. In this mini reconnaissance 

mission, through the fusion of vision and olfaction, the robot can effec-
tively and accurately identify the objects in blind boxes. This clearly 
demonstrates the immense potential of robots equipped with olfaction 
capabilities for a diverse array of future applications, encompassing 
security, anti-terrorism, disaster relief and beyond.

Construction of large sensor arrays
Expanding the sensor array has the potential to enhance discrimination 
power. To substantiate the technological feasibility of constructing 
a large sensor-array chip, we fabricated a 20 × 20 sensor-array BOC 
(with 400 sensors) and a 100 × 100 sensor-array BOC (with 10,000 
sensors). Both have a crossbar electrode configuration (Extended Data 
Fig. 6). The 20 × 20 sensor-array chip, with an individual sensor size of 
100 × 100 µm2, was fabricated by electrode deposition with a shadow 
mask. Its gas response pattern to 1 ppm acetone was collected to assess 
its functionality. The 100 × 100 sensor-array chip was fabricated by 
photolithography, resulting in individual sensors of size 10 × 10 µm2. 
The 10,000 sensors occupy an area of about 4 mm2. Its gas response 
patterns to 1 ppm acetone, ethanol, toluene and formaldehyde dem-
onstrate its ultra-high resolution compared to the 10 × 10 and 20 × 20 
sensor-array chips (Supplementary Fig. 53). With the aid of a more 
advanced algorithm, this BOC has the potential to be utilized under 
highly complex gas/odour scenarios.

Conclusions
We have reported a biomimetic olfactory system based on large mono-
lithically integrated nanotube sensor arrays. Our system uses a mono-
lithic 3D MOX sensor-array chip, fabricated on a nanoporous PAM with 
ALD and a multi-step SMAS method. This produces a MOX MCI layer 
on top of nanotube sensors. The MCI layer has a 2D material composi-
tion gradient, which enables a large diversity of sensing pixels inside 
the array. Thus, large sensor arrays ranging from 100 pixels to 10,000 
pixels can be fabricated.

The sensors have ppb-level sensing performance. With the assis-
tance of different algorithms, the system exhibits high accuracy (up to 
99.04%) in classifying several gas species. Moreover, the system offers 
excellent reliability, accurately identifying the components and con-
centrations of gas mixtures with a maximum absolute relative error of 
8.12% during a three-month testing period. It can distinguish 24 odours. 
Finally, we integrated a BOC into a quadrupedal mobile robot, so that 
it combines visual and olfactory senses, which could be used for small 
reconnaissance missions.

Our BOC devices do have certain limitations. The issues associ-
ated with MOX technology—which include a long-term drift of the 
baseline, relatively high resistance, relatively high power consumption 
(though lower than other MOX sensors) and a long response/recovery 
time—necessitate further investigation and improvement. We also 
note the need to enhance the manufacturing consistency of our sensor 
chips. Improving device-to-device and batch-to-batch consistency will 
require further optimization of the fabrication process. Furthermore, 
the capabilities of the current device may not satisfy the high indus-
trial standard of maintaining a less than 5% variation, so that further 
improvements are essential.

Methods
Deposition of a PdO/SnO2 sensing film
The device was built using a custom MEMS fabrication process, which 
is incompatible with conventional CMOS due to the free-standing PAM 
(thickness 45 µm, pixel size 450 nm and pore diameter 300 nm). PAMs 
were purchased from Shenzhen Top Membranes Technology Co., Ltd. 
A shadow mask with a 4 mm by 4 mm window size tightly covered the 
PAM substrate to define the deposition region. An SnO2 film was grown 
by ALD (MNT Micro and Nanotech Co., Ltd) on the PAM substrate using 
tetrakis (dimethylamino) tin (C8H24N4Sn, TDMAS, 99.999%) and H2O as 
the precursors and N2 as the carrier and purging gas. The temperatures 
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of the TDMAS and H2O were maintained at 70 and 25 °C, respectively. 
The temperature of reaction chamber was kept at 150 °C. SnO2 was 
deposited during 60 cycles of the process. Then Pd was deposited 
during six cycles, also using ALD. In this procedure, palladium (II) 
hexafluoroacetylacetone (99.999%) and hydrazine anhydrous were the 
precursors at temperatures of 80 and 25 °C, respectively. The chamber 
temperature was 200 °C. After that, the sample was transferred to the 
sputtering system for the next step.

Deposition of a suspended mask-assisted gradient film
Supplementary Figs. 2–4 show the process schematically. A mask with 
a square window measuring 8 mm × 8 mm was suspended over the PAM 
substrate. Diffraction of the plasma flux at the edge of the mask window 
leads to the formation of a gradient in the film during sputtering. The 
mask height was systematically optimized for different materials, as 
illustrated in Supplementary Figs. 2 and 3. Ultimately, a height of 6 mm 
was selected to deposit four kinds of MOX in the sequence ZnO, NiO, 
In2O3 and WO3. Notably, there was a 2 mm shift between the suspended 
mask window and the mask window on the PAM substrate. To enhance 
the variation of the distribution of each element, the suspended mask 
was turned through 90° for the deposition of each MOX. Finally, the 
sample was annealed at 450 °C for 3 h following the sputtering process.

Fabrication of electrodes, insulating layer and heater
Thermal evaporation was utilized twice to deposit 150 nm of Au on 
the top and bottom of the sample as the contact electrodes. For the 
10 × 10 sensor-array chip, a shadow mask with ten lines (width and gap 
both 140 µm) was designed to define the electrode pattern. For the 
20 × 20 sensor-array chip, the line width and gap of the shadow mask 
were reduced to 100 µm. For the 100 × 100 sensor-array chip, we used 
photolithography with two line widths (10 µm and 25 µm), which was 
performed on a Karl Suss MA6 system with a HPR 506 photoresist, with 
process conditions being dual coating at 3,000 rpm for an exposure 
time of 16 s. After the electrode deposition, a 2.5 µm SiO2 layer was 
deposited on the bottom side of the sample by electron-beam evapora-
tion as the insulating layer. Finally, a 200 nm serpentiform Pt heater was 
deposited onto the insulating layer by electron-beam evaporation to 
provide the optimal working temperature for the sensor-array chip. The 
performance of the Pt heater is characterized in Supplementary Fig. 16.

Material characterization
The XRD patterns were collected by a X’pert Pro diffractometer (PANa-
lytical). The SEM images of the surface and cross sections were captured 
with the JEOL JSM-7100F and JSM-7800F instruments. The TEM image of 
the single PAM channel was acquired on a JEOL JEM 2010F instrument. 
The EDS elemental mapping was obtained by SEM and TEM attach-
ments. The XPS measurements were conducted on a multi-technique 
surface analysis system (Kratos Axis Ultra DLD Spectrometer). The 
SIMS depth profiles were acquired by a ToF-SIMS spectrometer (Type V, 
ION-TOF GmbH). The thickness of the film produced by sputtering was 
characterized by a surface profiler (Alpha-Step D500 stylus profiler).

Sensing measurements
The sensor-array chips, fabricated using the aforementioned proce-
dure, were bonded to a dual in-line ceramic package or leadless chip 
carrier using copper wire and silver paste, which ensure reliable electri-
cal contact and a high signal-to-noise ratio. Notably, the sensor-array 
chip was suspended after the bonding process, resulting in optimal 
gas transmission capabilities. The packaged chip was integrated with 
an electrical circuit for reading out the electrical signal. The sensing 
measurements were performed in a 15 × 15 × 10 cm3 chamber using a 
dynamic gas flow method with a homemade gas supply system, which 
comprises a series of mass flow controllers connected to gas cylinders. 
Supplementary Fig. 54 is a schematic of the gas-sensing system. The car-
rier gas was synthetic air composed of 20% oxygen and 80% nitrogen. 

The testing gases with a fixed concentration (50 ppm/1,000 ppm) were 
purchased from Asia Pacific Gas Enterprise Co., Ltd. The testing gas 
concentration was controlled through the dilution method with our 
own MATLAB programme, which regulates the ratio of the flow rates 
of the carrier and testing gases. The total flow rate was maintained at 
500 sccm. Moreover, the programme can provide different gas pluses 
with accurate on and off times. The humidity was controlled by the bub-
bling method with a standard humidity sensor in a testing chamber for 
calibration. The gas response is defined as (Ra − Rg)/Ra × 100% (reducing 
gases) and (Rg − Ra)/Rg × 100% (oxidizing gases), where Ra and Rg are the 
resistances of sensors exposed to background gases (dry/wet air) and 
target gases, respectively.

Description of read-out circuit
To acquire signals from our gas sensor array with a crossbar structure, 
a read-out circuit capable of supporting a 32 × 32 array was designed 
and fabricated. The detailed design of the electrical circuit is illus-
trated in Supplementary Figs. 13 and 14. The resistance measurement 
of a single pixel was based on a voltage divider circuit with a reference 
resistor. Feedback was applied to idle electrodes to eliminate cross-
talk. The active pixel was selected by connecting the corresponding 
column electrode to the reference resistor through the first multi-
plexer (MUX1) while its row electrode was grounded through MUX2. 
For example, to test the resistance of the sensor at row i and column 
j, MUX1 connected one end of sensor (i, j) to a reference resistor. The 
other end of sensor (i, j) was grounded by connecting the input of ampi 
to ground with MUX2. Then sensor (i, j) and the reference resistor form 
a voltage divider circuit, so that the voltage signal can be tested after 
buffering. To eliminate crosstalk from adjacent sensors, this circuit 
ensures that the voltage of the other electrodes in row i and column j 
remain at Vout. This prevented any sneak current flowing between the 
row i electrode and column j electrode with other electrodes. For the 
column electrodes, only switch j was open, while the other switches 
remain closed. As a result, all column electrodes were connected to 
Vout. Similarly, the row electrodes outside of row i were also connected 
to Vout through buffers. This configuration ensures proper isolation 
and eliminates interference between electrodes. The signal from the 
voltage divider circuit went through a low-pass filter and was sampled 
by a 16 bit analogue-to-digital converter (AD7683). The measurement 
range was 0.02 to 1,000 MΩ, which effectively accommodates the 
resistances of our devices. A microprogrammed control unit was used 
to synchronize these MUXs and the analogue-to-digital conversion 
sampling. For the 10 × 10 sensor array, the test period was 1 s per frame. 
For the 20 × 20 sensor array, the test period was 4 s per frame. The 
100 × 100 sensor-array chip was read out by an assembled system. 
Specifically, the chip was connected to source measurement units (PXI-
4130, National Instruments) through two 128-channel multipixel units 
(PXI-2530B, National Instruments), which were installed inside a chassis 
(PXI-1031, National Instruments). The entire system was controlled by 
a home-built Python program. For the 100 × 100 sensor array, the test 
period was 45 s per frame.

Data availability
Data that support the findings of the study are available from the cor-
responding author upon reasonable request. Source data are provided 
with this paper.

Code availability
All the codes used to support the conclusions of the paper are available 
from the corresponding author upon reasonable request.
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Extended Data Fig. 1 | Fabrication process of the biomimetic olfactory 
chip (BOC). a, Bare PAM substrate. b, SnO2 deposition inside PAM by ALD. c, Pd 
deposition inside PAM by ALD. d, Multi-component interfacial layer deposition 

on PAM substrate by sputter. e, Top and bottom Au electrodes deposition by 
thermal evaporation. f, SiO2 insulating layer deposition by E-beam evaporation. 
g, Pt heater deposition by E-beam evaporation.
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Extended Data Fig. 2 | Device-to-device repeatability test by the statistics 
along the diagonal sensors (Sensor #1, 12, 23, 34, 45, 56, 67, 78, 89, 100, test 
gas: 1 ppm acetone). a, Optical image of twelve 100-pixel BOC chips. b, Average 
resistance of sensors. The sample size used to derive statistics is 12. The error bars 
indicate the standard deviation (SD). Data are presented as mean values +/- SD. 

c, Standard deviation of resistances. d, Coefficient of variation of resistances. e, 
Average gas response of sensors. The sample size used to derive statistics is 12. 
The error bars indicate the standard deviation (SD). Data are presented as mean 
values +/− SD. f, Standard deviation of gas responses. g, Coefficient of variation 
of gas responses.
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Extended Data Fig. 3 | The statistical data of the diagonal sensors’ response 
(Sensor #1, 12, 23, 34, 45, 56, 67, 78, 89, 100) in sensor array chip to 1 ppm 
acetone at different working temperatures. a, Response times. b, Recovery 

times. c. Gas responses. The sample size used to derive statistics is 6. The error 
bars indicate the standard deviation (SD). Data are presented as mean values 
+/- SD.
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Extended Data Fig. 4 | Single gas classification with the BOC (The training 
data is collected in the 1st month and the test data is collected in the 2nd 
and 3rd months.). a, Confusion matrix of the actual class and predicted 
class for recognizing 8 gases (A: acetone, C: carbon monoxide, E: ethanol, F: 
formaldehyde, N: nitrogen dioxide, T: toluene, H: hydrogen, I: isobutylene) by 

using the testing data collected in the 2nd month. b, Confusion matrix of the 
actual class and predicted class for recognizing 8 gases by using the testing data 
collected in the 3rd month. c, Prediction accuracy by using the 1st month data as 
the training data and the 2nd and 3rd months data as the testing data.
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Extended Data Fig. 5 | The path design of robot for the experiment of the fusion of the quadruped robot’s vision and olfactory functions to implement blind 
box recognition. We design two experiments: one is using only one odour (red wine), and another one is using two odours (orange and red wine).
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Extended Data Fig. 6 | Construction of ultra-large-scale sensor array BOCs. 
a, Picture of 20 × 20 sensor array chip bonded on LCC chip carrier. b, c, Optical 
images of 20 × 20 sensor array chip with different magnification (scale bar: b is 
1 mm and c is 100 µm). d, Gas response pattern of 20 × 20 sensor array chip to 1 
ppm acetone. e, Picture of 100 × 100 sensor array chip bonded on C-PGA chip 

carrier. f and g, Optical images of 100 × 100 sensor array chip with different 
magnification (scale bar: f is 1 mm and g is 100 µm). h, SEM image of 100 × 100 
sensor array chip (scale bar: 10 µm). i, Gas response pattern of 100 × 100 sensor 
array chip to 1 ppm acetone.
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